On a One-Dimensional Hydrodynamic Model for Semiconductors with Field-Dependent Mobility

نویسندگان

چکیده

We consider a one-dimensional, isentropic, hydrodynamical model for unipolar semiconductor, with the mobility depending on electric field. The is related to momentum relaxation time, and field-dependent models are commonly used describe occurrence of saturation velocity, that is, limit value electron mean velocity as field increases. For steady state system, we prove existence smooth solutions in subsonic case, suitable assumption function. Furthermore, uniqueness sufficiently small currents.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic instability of one-dimensional electron flow in semiconductors

The hydrodynamic instability of one-dimensional flow of electrons in an ungated semiconductor driven by a voltage difference is studied. The governing transport and electrostatic equations are linearized about the steady flow, and the eigenspectrum of perturbations is calculated. The carrier flow is found to be unstable under certain circumstances through oscillations that manifest themselves a...

متن کامل

Temperature influence on hydrodynamic instabilities in a one-dimensional electron flow in semiconductors

Hydrodynamic instabilities in one-dimensional electron flow in semiconductor and their dependency with the electron and lattice temperatures are studied here. The driving force for the electrons is imposed by a voltage difference, and the hydrodynamic and electrostatic equations are linearized with respect to the steady-flow solution. A two-temperature hydrodynamic model predicts a stable elect...

متن کامل

Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration

In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...

متن کامل

A theory for the high-field current-carrying capacity of one-dimensional semiconductors

It is shown that current saturation in semiconducting carbon nanotubes is indistinguishable from metallic nanotubes if the carrier density is above a critical value determined by the bandgap and the optical phonon energy. This feature stems from the higher number of current-carrying states in the semiconducting tubes due to the van Hove singularity at the band edge. Above this critical carrier ...

متن کامل

Hydrodynamic model for charge carriers involving strong ionization in semiconductors

A set of hydrodynamic equations modeling strong ionization in semiconductors is formally derived from a kinetic framework. To that purpose, a system of Boltzmann transport equations governing the distribution functions of conduction electrons and holes is considered. The charge carriers obey a degenerate gas statistics and their kinetic energy relations are arbitrary. The umklapp collisions are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9172152